

MEDINA SOIL ACTIVATOR

FIELD TRIAL RESULTS

At Medina Agriculture Products, we are committed to advancing agricultural productivity through innovative soil management solutions. Our recent field trials with Soil Activator, a premium soil enhancement product, demonstrate its effectiveness in boosting soil microbial activity and biomass across diverse application methods and crop cycles. Below, we present the results of three distinct trials, showcasing the product's impact on soil health and its potential to support sustainable farming practices.

KEY TAKEAWAYS

Across all trials, Soil Activator consistently enhanced soil microbial biomass, with pronounced benefits to fungal populations and overall soil vitality. Whether applied incrementally over months or in a single dose, the product supports a thriving microbial ecosystem, critical for nutrient cycling and crop resilience.

The trials also demonstrate Soil Activator's versatility across crop types and application methods (broadcast, pivot irrigation).

These results affirm Soil Activator's role as a powerful tool for farmers seeking to optimize soil health and productivity. We encourage growers to explore how Soil Activator can enhance their operations and invite further inquiries about integrating this solution into their soil management practices.

For more details or to discuss implementation strategies, contact our team at Medina Agriculture Products or visit medinaag.com

TRIAL ONE

3 GALLONS OVER 6 MONTHS

OATS • FALL CORN

Hondo Texas • Clay Loam

APPLICATION PROTOCOL:

Soil Activator was applied broadcast at a rate of 1 gallon per acre, with three applications over a 6-month period. The trial began in an oat field and transitioned to fall corn (yield data for corn pending).

RESULTS:

The treated soil exhibited a significant increase in total biomass, with a remarkable 741-unit improvement compared to the untreated control. All microbial groups—bacteria and fungi—showed higher populations in the treated soil. These results highlight Soil Activator's ability to enhance soil microbial diversity and biomass, fostering a robust foundation for crop growth over an extended period.

— TRIAL TWO —

PIVOT IRRIGATION • 60 DAYS POST-APPLICATION

FALL CORN

Hondo Texas • Clay Loam

APPLICATION PROTOCOL:

A single 3-gallon application of Soil Activator was delivered through pivot irrigation, with soil samples collected 60 days later. (Yield results pending)

RESULTS:

The treated soil demonstrated higher total biomass, with elevated levels of total bacteria, Gram-positive bacteria, actinomycetes, mycorrhizal fungi, and undifferentiated microbes compared to the untreated control. While the fungi-to-bacteria ratio was slightly lower in the treated soil, likely due to the short evaluation window, the overall microbial response was positive. These early results suggest Soil Activator promotes rapid microbial proliferation, with further monitoring recommended to assess long-term trends in soil biomass.

TRIAL THREE

CORN, POST-HARVEST FALLOW SPRING CORN

Knippa Texas • Clay

APPLICATION PROTOCOL:

Soil Activator was applied at 1 gallon per month for three months, totaling 3 gallons, starting at corn planting. Soil samples were collected 90 days after corn harvest (7 months after first application), during a fallow period.

RESULTS:

Fallow periods typically challenge soil microbial populations, yet Soil Activator maintained a significant advantage in fungal populations. All fungal groups in the treated soil were notably higher than in the untreated soil. While bacterial counts were slightly lower in the treated samples—likely due to the fallow period's stress on microbial activity—the differences were not statistically significant. The substantial increase in fungal biomass underscores Soil Activator's ability to sustain soil health under challenging conditions.